Blender V2.61 - r43446

smoke_API.cpp

Go to the documentation of this file.
00001 /*
00002  * ***** BEGIN GPL LICENSE BLOCK *****
00003  *
00004  * This program is free software; you can redistribute it and/or
00005  * modify it under the terms of the GNU General Public License
00006  * as published by the Free Software Foundation; either version 2
00007  * of the License, or (at your option) any later version.
00008  *
00009  * This program is distributed in the hope that it will be useful,
00010  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012  * GNU General Public License for more details.
00013  *
00014  * You should have received a copy of the GNU General Public License
00015  * along with this program; if not, write to the Free Software Foundation,
00016  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  *
00018  * The Original Code is Copyright (C) 2009 by Daniel Genrich
00019  * All rights reserved.
00020  *
00021  * Contributor(s): Daniel Genrich
00022  *
00023  * ***** END GPL LICENSE BLOCK *****
00024  */
00025 
00031 #include "FLUID_3D.h"
00032 #include "WTURBULENCE.h"
00033 
00034 #include <stdio.h>
00035 #include <stdlib.h>
00036 #include <math.h>
00037 
00038 // y in smoke is z in blender
00039 extern "C" FLUID_3D *smoke_init(int *res, float *p0)
00040 {
00041     // smoke lib uses y as top-bottom/vertical axis where blender uses z
00042     FLUID_3D *fluid = new FLUID_3D(res, p0);
00043 
00044     // printf("xres: %d, yres: %d, zres: %d\n", res[0], res[1], res[2]);
00045 
00046     return fluid;
00047 }
00048 
00049 extern "C" WTURBULENCE *smoke_turbulence_init(int *res, int amplify, int noisetype)
00050 {
00051     // initialize wavelet turbulence
00052     if(amplify)
00053         return new WTURBULENCE(res[0],res[1],res[2], amplify, noisetype);
00054     else 
00055         return NULL;
00056 }
00057 
00058 extern "C" void smoke_free(FLUID_3D *fluid)
00059 {
00060     delete fluid;
00061     fluid = NULL;
00062 }
00063 
00064 extern "C" void smoke_turbulence_free(WTURBULENCE *wt)
00065 {
00066      delete wt;
00067      wt = NULL;
00068 }
00069 
00070 extern "C" size_t smoke_get_index(int x, int max_x, int y, int max_y, int z /*, int max_z */)
00071 {
00072     // // const int index = x + y * smd->res[0] + z * smd->res[0]*smd->res[1];
00073     return x + y * max_x + z * max_x*max_y;
00074 }
00075 
00076 extern "C" size_t smoke_get_index2d(int x, int max_x, int y /*, int max_y, int z, int max_z */)
00077 {
00078     return x + y * max_x;
00079 }
00080 
00081 extern "C" void smoke_step(FLUID_3D *fluid, size_t framenr, float fps)
00082 {
00083     /* stability values copied from wturbulence.cpp */
00084     const int maxSubSteps = 25;
00085     const float maxVel = 0.5f; /* TODO: maybe 0.5 is still too high, please confirm! -dg */
00086 
00087     float dt = DT_DEFAULT;
00088     float maxVelMag = 0.0f;
00089     int totalSubsteps;
00090     int substep = 0;
00091     float dtSubdiv;
00092 
00093     /* get max velocity and lower the dt value if it is too high */
00094     size_t size= fluid->_xRes * fluid->_yRes * fluid->_zRes;
00095 
00096     for(size_t i = 0; i < size; i++)
00097     {
00098         float vtemp = (fluid->_xVelocity[i]*fluid->_xVelocity[i]+fluid->_yVelocity[i]*fluid->_yVelocity[i]+fluid->_zVelocity[i]*fluid->_zVelocity[i]);
00099         if(vtemp > maxVelMag)
00100             maxVelMag = vtemp;
00101     }
00102 
00103     /* adapt timestep for different framerates, dt = 0.1 is at 25fps */
00104     dt *= (25.0f / fps);
00105 
00106     maxVelMag = sqrt(maxVelMag) * dt * (*(fluid->_dtFactor));
00107     totalSubsteps = (int)((maxVelMag / maxVel) + 1.0f); /* always round up */
00108     totalSubsteps = (totalSubsteps < 1) ? 1 : totalSubsteps;
00109     totalSubsteps = (totalSubsteps > maxSubSteps) ? maxSubSteps : totalSubsteps;
00110     dtSubdiv = (float)dt / (float)totalSubsteps;
00111 
00112     // printf("totalSubsteps: %d, maxVelMag: %f, dt: %f\n", totalSubsteps, maxVelMag, dt);
00113 
00114     for(substep = 0; substep < totalSubsteps; substep++)
00115         fluid->step(dtSubdiv);
00116 }
00117 
00118 extern "C" void smoke_turbulence_step(WTURBULENCE *wt, FLUID_3D *fluid)
00119 {
00120     wt->stepTurbulenceFull(fluid->_dt/fluid->_dx, fluid->_xVelocity, fluid->_yVelocity, fluid->_zVelocity, fluid->_obstacles); 
00121 }
00122 
00123 extern "C" void smoke_initBlenderRNA(FLUID_3D *fluid, float *alpha, float *beta, float *dt_factor, float *vorticity, int *border_colli)
00124 {
00125     fluid->initBlenderRNA(alpha, beta, dt_factor, vorticity, border_colli);
00126 }
00127 
00128 extern "C" void smoke_dissolve(FLUID_3D *fluid, int speed, int log)
00129 {
00130     float *density = fluid->_density;
00131     //float *densityOld = fluid->_densityOld;
00132     float *heat = fluid->_heat;
00133 
00134     if(log)
00135     {
00136         /* max density/speed = dydx */
00137         float dydx = 1.0 / (float)speed;
00138         size_t size= fluid->_xRes * fluid->_yRes * fluid->_zRes;
00139 
00140         for(size_t i = 0; i < size; i++)
00141         {
00142             density[i] *= (1.0 - dydx);
00143 
00144             if(density[i] < 0.0f)
00145                 density[i] = 0.0f;
00146 
00147             heat[i] *= (1.0 - dydx);
00148 
00149             /*if(heat[i] < 0.0f)
00150                 heat[i] = 0.0f;*/
00151         }
00152     }
00153     else // linear falloff
00154     {
00155         /* max density/speed = dydx */
00156         float dydx = 1.0 / (float)speed;
00157         size_t size= fluid->_xRes * fluid->_yRes * fluid->_zRes;
00158 
00159         for(size_t i = 0; i < size; i++)
00160         {
00161             density[i] -= dydx;
00162 
00163             if(density[i] < 0.0f)
00164                 density[i] = 0.0f;
00165 
00166             if(abs(heat[i]) < dydx) heat[i] = 0.0f;
00167             else if (heat[i]>0.0f) heat[i] -= dydx;
00168             else if (heat[i]<0.0f) heat[i] += dydx;
00169                 
00170         }
00171     }
00172 }
00173 
00174 extern "C" void smoke_dissolve_wavelet(WTURBULENCE *wt, int speed, int log)
00175 {
00176     float *density = wt->getDensityBig();
00177     Vec3Int r = wt->getResBig();
00178 
00179     if(log)
00180     {
00181         /* max density/speed = dydx */
00182         float dydx = 1.0 / (float)speed;
00183         size_t size= r[0] * r[1] * r[2];
00184 
00185         for(size_t i = 0; i < size; i++)
00186         {
00187             density[i] *= (1.0 - dydx);
00188 
00189             if(density[i] < 0.0f)
00190                 density[i] = 0.0f;
00191         }
00192     }
00193     else // linear falloff
00194     {
00195         /* max density/speed = dydx */
00196         float dydx = 1.0 / (float)speed;
00197         size_t size= r[0] * r[1] * r[2];
00198 
00199         for(size_t i = 0; i < size; i++)
00200         {
00201             density[i] -= dydx;
00202 
00203             if(density[i] < 0.0f)
00204                 density[i] = 0.0f;              
00205         }
00206     }
00207 }
00208 
00209 extern "C" void smoke_initWaveletBlenderRNA(WTURBULENCE *wt, float *strength)
00210 {
00211     wt->initBlenderRNA(strength);
00212 }
00213 
00214 template < class T > inline T ABS( T a )
00215 {
00216     return (0 < a) ? a : -a ;
00217 }
00218 
00219 extern "C" void smoke_export(FLUID_3D *fluid, float *dt, float *dx, float **dens, float **densold, float **heat, float **heatold, float **vx, float **vy, float **vz, float **vxold, float **vyold, float **vzold, unsigned char **obstacles)
00220 {
00221     *dens = fluid->_density;
00222     *densold = fluid->_densityOld;
00223     *heat = fluid->_heat;
00224     *heatold = fluid->_heatOld;
00225     *vx = fluid->_xVelocity;
00226     *vy = fluid->_yVelocity;
00227     *vz = fluid->_zVelocity;
00228     *vxold = fluid->_xVelocityOld;
00229     *vyold = fluid->_yVelocityOld;
00230     *vzold = fluid->_zVelocityOld;
00231     *obstacles = fluid->_obstacles;
00232     dt = &(fluid->_dt);
00233     dx = &(fluid->_dx);
00234 
00235 }
00236 
00237 extern "C" void smoke_turbulence_export(WTURBULENCE *wt, float **dens, float **densold, float **tcu, float **tcv, float **tcw)
00238 {
00239     if(!wt)
00240         return;
00241 
00242     *dens = wt->_densityBig;
00243     *densold = wt->_densityBigOld;
00244     *tcu = wt->_tcU;
00245     *tcv = wt->_tcV;
00246     *tcw = wt->_tcW;
00247 }
00248 
00249 extern "C" float *smoke_get_density(FLUID_3D *fluid)
00250 {
00251     return fluid->_density;
00252 }
00253 
00254 extern "C" float *smoke_get_heat(FLUID_3D *fluid)
00255 {
00256     return fluid->_heat;
00257 }
00258 
00259 extern "C" float *smoke_get_velocity_x(FLUID_3D *fluid)
00260 {
00261     return fluid->_xVelocity;
00262 }
00263 
00264 extern "C" float *smoke_get_velocity_y(FLUID_3D *fluid)
00265 {
00266     return fluid->_yVelocity;
00267 }
00268 
00269 extern "C" float *smoke_get_velocity_z(FLUID_3D *fluid)
00270 {
00271     return fluid->_zVelocity;
00272 }
00273 
00274 extern "C" float *smoke_get_force_x(FLUID_3D *fluid)
00275 {
00276     return fluid->_xForce;
00277 }
00278 
00279 extern "C" float *smoke_get_force_y(FLUID_3D *fluid)
00280 {
00281     return fluid->_yForce;
00282 }
00283 
00284 extern "C" float *smoke_get_force_z(FLUID_3D *fluid)
00285 {
00286     return fluid->_zForce;
00287 }
00288 
00289 extern "C" float *smoke_turbulence_get_density(WTURBULENCE *wt)
00290 {
00291     return wt ? wt->getDensityBig() : NULL;
00292 }
00293 
00294 extern "C" void smoke_turbulence_get_res(WTURBULENCE *wt, int *res)
00295 {
00296     if(wt)
00297     {
00298         Vec3Int r = wt->getResBig();
00299         res[0] = r[0];
00300         res[1] = r[1];
00301         res[2] = r[2];
00302     }
00303 }
00304 
00305 extern "C" unsigned char *smoke_get_obstacle(FLUID_3D *fluid)
00306 {
00307     return fluid->_obstacles;
00308 }
00309 
00310 extern "C" void smoke_turbulence_set_noise(WTURBULENCE *wt, int type)
00311 {
00312     wt->setNoise(type);
00313 }