Blender V2.61 - r43446

svm_texture.h

Go to the documentation of this file.
00001 /*
00002  * Copyright 2011, Blender Foundation.
00003  *
00004  * This program is free software; you can redistribute it and/or
00005  * modify it under the terms of the GNU General Public License
00006  * as published by the Free Software Foundation; either version 2
00007  * of the License, or (at your option) any later version.
00008  *
00009  * This program is distributed in the hope that it will be useful,
00010  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012  * GNU General Public License for more details.
00013  *
00014  * You should have received a copy of the GNU General Public License
00015  * along with this program; if not, write to the Free Software Foundation,
00016  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  */
00018 
00019 CCL_NAMESPACE_BEGIN
00020 
00021 /* Voronoi Distances */
00022 
00023 __device float voronoi_distance(NodeDistanceMetric distance_metric, float3 d, float e)
00024 {
00025     if(distance_metric == NODE_VORONOI_DISTANCE_SQUARED)
00026         return dot(d, d);
00027     if(distance_metric == NODE_VORONOI_ACTUAL_DISTANCE)
00028         return len(d);
00029     if(distance_metric == NODE_VORONOI_MANHATTAN)
00030         return fabsf(d.x) + fabsf(d.y) + fabsf(d.z);
00031     if(distance_metric == NODE_VORONOI_CHEBYCHEV)
00032         return fmaxf(fabsf(d.x), fmaxf(fabsf(d.y), fabsf(d.z)));
00033     if(distance_metric == NODE_VORONOI_MINKOVSKY_H)
00034         return sqrtf(fabsf(d.x)) + sqrtf(fabsf(d.y)) + sqrtf(fabsf(d.y));
00035     if(distance_metric == NODE_VORONOI_MINKOVSKY_4)
00036         return sqrtf(sqrtf(dot(d*d, d*d)));
00037     if(distance_metric == NODE_VORONOI_MINKOVSKY)
00038         return powf(powf(fabsf(d.x), e) + powf(fabsf(d.y), e) + powf(fabsf(d.z), e), 1.0f/e);
00039     
00040     return 0.0f;
00041 }
00042 
00043 /* Voronoi / Worley like */
00044 
00045 __device_noinline void voronoi(float3 p, NodeDistanceMetric distance_metric, float e, float da[4], float3 pa[4])
00046 {
00047     /* returns distances in da and point coords in pa */
00048     int xx, yy, zz, xi, yi, zi;
00049 
00050     xi = (int)floorf(p.x);
00051     yi = (int)floorf(p.y);
00052     zi = (int)floorf(p.z);
00053 
00054     da[0] = 1e10f;
00055     da[1] = 1e10f;
00056     da[2] = 1e10f;
00057     da[3] = 1e10f;
00058 
00059     pa[0] = make_float3(0.0f, 0.0f, 0.0f);
00060     pa[1] = make_float3(0.0f, 0.0f, 0.0f);
00061     pa[2] = make_float3(0.0f, 0.0f, 0.0f);
00062     pa[3] = make_float3(0.0f, 0.0f, 0.0f);
00063 
00064     for(xx = xi-1; xx <= xi+1; xx++) {
00065         for(yy = yi-1; yy <= yi+1; yy++) {
00066             for(zz = zi-1; zz <= zi+1; zz++) {
00067                 float3 ip = make_float3((float)xx, (float)yy, (float)zz);
00068                 float3 vp = cellnoise_color(ip);
00069                 float3 pd = p - (vp + ip);
00070                 float d = voronoi_distance(distance_metric, pd, e);
00071 
00072                 vp += ip;
00073 
00074                 if(d < da[0]) {
00075                     da[3] = da[2];
00076                     da[2] = da[1];
00077                     da[1] = da[0];
00078                     da[0] = d;
00079 
00080                     pa[3] = pa[2];
00081                     pa[2] = pa[1];
00082                     pa[1] = pa[0];
00083                     pa[0] = vp;
00084                 }
00085                 else if(d < da[1]) {
00086                     da[3] = da[2];
00087                     da[2] = da[1];
00088                     da[1] = d;
00089 
00090                     pa[3] = pa[2];
00091                     pa[2] = pa[1];
00092                     pa[1] = vp;
00093                 }
00094                 else if(d < da[2]) {
00095                     da[3] = da[2];
00096                     da[2] = d;
00097 
00098                     pa[3] = pa[2];
00099                     pa[2] = vp;
00100                 }
00101                 else if(d < da[3]) {
00102                     da[3] = d;
00103                     pa[3] = vp;
00104                 }
00105             }
00106         }
00107     }
00108 }
00109 
00110 __device float voronoi_Fn(float3 p, int n)
00111 {
00112     float da[4];
00113     float3 pa[4];
00114 
00115     voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
00116 
00117     return da[n];
00118 }
00119 
00120 __device float voronoi_FnFn(float3 p, int n1, int n2)
00121 {
00122     float da[4];
00123     float3 pa[4];
00124 
00125     voronoi(p, NODE_VORONOI_DISTANCE_SQUARED, 0, da, pa);
00126 
00127     return da[n2] - da[n1];
00128 }
00129 
00130 __device float voronoi_F1(float3 p) { return voronoi_Fn(p, 0); }
00131 __device float voronoi_F2(float3 p) { return voronoi_Fn(p, 1); }
00132 __device float voronoi_F3(float3 p) { return voronoi_Fn(p, 2); }
00133 __device float voronoi_F4(float3 p) { return voronoi_Fn(p, 3); }
00134 __device float voronoi_F1F2(float3 p) { return voronoi_FnFn(p, 0, 1); }
00135 
00136 __device float voronoi_Cr(float3 p)
00137 {
00138     /* crackle type pattern, just a scale/clamp of F2-F1 */
00139     float t = 10.0f*voronoi_F1F2(p);
00140     return (t > 1.0f)? 1.0f: t;
00141 }
00142 
00143 __device float voronoi_F1S(float3 p) { return 2.0f*voronoi_F1(p) - 1.0f; }
00144 __device float voronoi_F2S(float3 p) { return 2.0f*voronoi_F2(p) - 1.0f; }
00145 __device float voronoi_F3S(float3 p) { return 2.0f*voronoi_F3(p) - 1.0f; }
00146 __device float voronoi_F4S(float3 p) { return 2.0f*voronoi_F4(p) - 1.0f; }
00147 __device float voronoi_F1F2S(float3 p) { return 2.0f*voronoi_F1F2(p) - 1.0f; }
00148 __device float voronoi_CrS(float3 p) { return 2.0f*voronoi_Cr(p) - 1.0f; }
00149 
00150 /* Noise Bases */
00151 
00152 __device float noise_basis(float3 p, NodeNoiseBasis basis)
00153 {
00154     /* Only Perlin enabled for now, others break CUDA compile by making kernel
00155        too big, with compile using > 4GB, due to everything being inlined. */
00156 
00157 #if 0
00158     if(basis == NODE_NOISE_PERLIN)
00159 #endif
00160         return noise(p);
00161 #if 0
00162     if(basis == NODE_NOISE_VORONOI_F1)
00163         return voronoi_F1S(p);
00164     if(basis == NODE_NOISE_VORONOI_F2)
00165         return voronoi_F2S(p);
00166     if(basis == NODE_NOISE_VORONOI_F3)
00167         return voronoi_F3S(p);
00168     if(basis == NODE_NOISE_VORONOI_F4)
00169         return voronoi_F4S(p);
00170     if(basis == NODE_NOISE_VORONOI_F2_F1)
00171         return voronoi_F1F2S(p);
00172     if(basis == NODE_NOISE_VORONOI_CRACKLE)
00173         return voronoi_CrS(p);
00174     if(basis == NODE_NOISE_CELL_NOISE)
00175         return cellnoise(p);
00176     
00177     return 0.0f;
00178 #endif
00179 }
00180 
00181 /* Soft/Hard Noise */
00182 
00183 __device float noise_basis_hard(float3 p, NodeNoiseBasis basis, int hard)
00184 {
00185     float t = noise_basis(p, basis);
00186     return (hard)? fabsf(2.0f*t - 1.0f): t;
00187 }
00188 
00189 /* Waves */
00190 
00191 __device float noise_wave(NodeWaveType wave, float a)
00192 {
00193     if(wave == NODE_WAVE_SINE) {
00194         return 0.5f + 0.5f*sin(a);
00195     }
00196     else if(wave == NODE_WAVE_SAW) {
00197         float b = 2.0f*M_PI_F;
00198         int n = (int)(a / b);
00199         a -= n*b;
00200         if(a < 0.0f) a += b;
00201 
00202         return a / b;
00203     }
00204     else if(wave == NODE_WAVE_TRI) {
00205         float b = 2.0f*M_PI_F;
00206         float rmax = 1.0f;
00207 
00208         return rmax - 2.0f*fabsf(floorf((a*(1.0f/b))+0.5f) - (a*(1.0f/b)));
00209     }
00210 
00211     return 0.0f;
00212 }
00213 
00214 /* Turbulence */
00215 
00216 __device_noinline float noise_turbulence(float3 p, NodeNoiseBasis basis, float octaves, int hard)
00217 {
00218     float fscale = 1.0f;
00219     float amp = 1.0f;
00220     float sum = 0.0f;
00221     int i, n;
00222 
00223     octaves = clamp(octaves, 0.0f, 16.0f);
00224     n= (int)octaves;
00225 
00226     for(i = 0; i <= n; i++) {
00227         float t = noise_basis(fscale*p, basis);
00228 
00229         if(hard)
00230             t = fabsf(2.0f*t - 1.0f);
00231 
00232         sum += t*amp;
00233         amp *= 0.5f;
00234         fscale *= 2.0f;
00235     }
00236 
00237     float rmd = octaves - floor(octaves);
00238 
00239     if(rmd != 0.0f) {
00240         float t = noise_basis(fscale*p, basis);
00241 
00242         if(hard)
00243             t = fabsf(2.0f*t - 1.0f);
00244 
00245         float sum2 = sum + t*amp;
00246 
00247         sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
00248         sum2 *= ((float)(1 << (n+1))/(float)((1 << (n+2)) - 1));
00249 
00250         return (1.0f - rmd)*sum + rmd*sum2;
00251     }
00252     else {
00253         sum *= ((float)(1 << n)/(float)((1 << (n+1)) - 1));
00254         return sum;
00255     }
00256 }
00257 
00258 CCL_NAMESPACE_END
00259